

Neuraminidase Sp

Sialidase, NANase, N-acetylneuraminate glycohydrolase

 $\alpha(2\text{-}3)$ Neuraminidase (N-acetylneuraminate glycohydrolase EC 3.2.1.18) cleaves exclusively the non-reducing terminal $\alpha(2\text{-}3)$ unbranched sialic acid residues from complex carbohydrates and glycoproteins. There is no detectable activity on $\alpha(2\text{-}6)$ or $\alpha(2\text{-}8)$ linkages or on branched $\alpha(2\text{-}3)$ linkages (see Figure 1). To cleave all non-reducing terminal sialic acid residues including branched sialic acids (linked to an internal residue) from complex carbohydrates and glycoproteins, use $\alpha(2\text{-}3,6,8,9)$ Neuraminidase (E-S001).

Source

recombinant from Streptococcus pneumoniae in E. Coli

Catalog Number

E-S007 60 μl E-S007-20 20 μl E-S007-200 200 μl

EC 3.2.1.18

Applications

- •Structural analysis of oligosaccharides
- •Determining sialic acid linkage
- •Glycoprotein deglycosylation
- •Removing heterogeneity from glycoproteins

Recommended Reagents

included with 20 µL and 60 µL pack sizes:

1 vial: Reaction buffer – $400 \mu l$

250mM Sodium phosphate, pH 6.0

Specificity

All non-reducing terminal branched and unbranched α -(2-3) sialic acid.

Activity ≥ 5 U/ml Specific Activity ≥ 150 U/mg

Specific Activity Assay

One unit of QA-Bio Neuraminidase is defined as the amount of enzyme required to produce 1 µmole of methylumbelliferone in 1 minute at 37°C, pH 5.0 from MU-NANA (2'.-(4-methyl-umbelliferyl)-alpha-D-N acetylneuraminic acid].

Molecular Weight ~75,000 daltons

pH optimum 6.0, active over the range 4.5-7.

50 mM sodium phosphate (pH 6.0) provides the optimal buffer for enzyme activity with sialyllactose, a standard substrate. If glycosidase treatment is performed at suboptimal pH because of glycoprotein solubility or activity requirements, expect some diminution in enzyme activity.

Formulation

The enzyme is provided as a sterile-filtered solution in in 50 mM Sodium phosphate pH 7.5.

Stability

Stable at least 12 months when stored properly. Several days exposure to ambient temperatures will not reduce activity.

Neuraminidase Sp Specifications - Protocol

Storage

Store enzyme at 4°C. Do not freeze.

Purity

QA-Bio Neuraminidase Sp is tested for contaminating protease as follows: $10 \mu g$ of denatured BSA is incubated at 37° C for 24 hours with $2 \mu l$ of enzyme. SDS-PAGE analysis of the treated BSA shows no evidence of degradation.

The production host strain has been extensively tested and does not produce any detectable glycosidases.

Directions for use

- 1. Add up to 100 μg of glycoprotein or 1 nmol of oligosaccharide to tube.
- 2. Add de-ionized water to a total of 14 µl.
- 3. Add 4 µl 5x Reaction Buffer 6.0.
- 4. Add 2 µl Neuraminidase Sp.
- 5. Incubate at 37°C for 1 hour.

NOTE: longer incubation times are necessary if branched sialic acids are present.

Desialylation may be monitored by SDS-PAGE if the size differential between native and de-sialylated protein is sufficient for detection.

References:

Corfield, A. P., H. Higa, J. C. Paulson and R. Schauer. The specificity of viral and bacterial sialidases for alpha(2-3) and alpha(2-6)-linked sialic acids in glycoproteins. Biochim Biophys Acta 744:121-126 (1983).

Dwek, R. A., C. J. Edge, D. J. Harvey, M. R. Wormald and R. B. Parekh. Analysis of glycoprotein-associated oligosaccharides. Ann Rev Biochem 62:65-100 (1993).

Kobata, A. Use of endo- and exoglycosidases for structural studies of glycoconjugates. Anal Biochem 100:1-14 (1979).

Prime, S. J. Dearnley, A. M. Venton, R. B. Parekh and C. J. Edge. Oligosaccharide sequencing based on exo- and endoglycosidase digestion and liquid chromatographic analysis of the products. J Chromatogr A 720:263-274 (1996).

Roggentin, P, B. Rothe, F. Lottspeich and R. Schauer. Cloning and sequencing of a Clostridium perfringens sialidase gene. FEBS Lett 238: 31-34 (Sept 1988).

Roggentin P., R. G. Kleineidam and R. Schauer. Diversity in the properties of two sialidase isoenzymes produced by Clostridium perfringens spp. Biol Chem Hoppe-Seyler 376: 569-575 (1995).

Warranties and liabilities

QA-Bio, Onc warrants that the above product conforms to the specifications described herein. Should the product fail for reasons other than through misuse QA-Bio, Inc will, at its option, replace free of charge or refund the purchase price. This warranty is exclusive and QA-Bio, Inc makes no other warrants, expressed or implied, including any implied conditions or warranties of merchantability or fitness for any particular purpose.

QA-Bio, Inc shall not be liable for any incidental, consequential or contingent damages.

This product is intended for *in vitro* research only.

revised on November 10, 2020