

Sulfo-NHS Protocol and Product Information Sheet

Product Category:	Zero-Length Crosslinkers
Catalog Number(s):	<u>c1102-500mg, c1102-1gm, c1102-5gm</u> , c1102-custom
Product Name:	Sulfo-NHS
Alternative Name(s):	N-Hydroxysulfosuccinimide; Hydroxy-2,5-dioxoyrrolidine-3-sulfonate
CAS Number:	106627-54-7
Chemical Formula:	C₄H₄NO ₆ SNa
Molecular Weight:	217.13
Spacer Arm Length:	n/a
Storage Conditions:	4°C (Protect from moisture, allow sample to warm to room temperature before opening; ships at ambient temperature.)

Background Information

Zero-length crosslinking allows scientists to immobilize protein-protein interactions without introducing a spacer arm. The EDC / Sulfo-NHS system has been perhaps the most successful way of creating zero-length crosslinks for decades. Facilitated through a reactive carbodiimide (EDC) and Sulfo-NHS as a catalyst, this coupling procedure is a highly efficient choice for crosslinking proteins or immobilizing proteins to a support. This procedure is designed to assist the scientist in crosslinking proteins or creating protein:protein conjugates. Immobilization techniques and other uses for this set of reagents can be obtained by contacting ProteoChem's technical support.

General Sulfo-NHS Protein Crosslinking Protocol

Important Notes:

- Except as indicated in this protocol, avoid using buffers that contain DTT, EDTA, or β-Mercaptoethanol, as these can interfere with conjugation reaction.
- It is recommended that the incubation steps of this procedure be done using a rotary stirring device, although intermittent light vortexing is also acceptable.
- When choosing Protein #1 (P_1) and Protein #2 (P_2), ensure that P_1 has free carboxyl groups available (COOH) and P_2 has free amine groups available (NH₂).
 - $\boldsymbol{P}_1\!\!:$ Terminal COOH, Asp, and Glu
 - P₂: Terminal NH₂, Lys

Reagents and Buffers Needed

Conjugation Buffer: 100 mM MES (<u>cr8107-25gm</u>), 500 mM NaCl, pH 6.0 (*Abr. MES* = 2(*N*-morpholino)ethanesulfonic acid) β-Mercaptoethanol EDC (EDC-HCl, <u>c1100-100mg</u>) Hydroxylamine-HCl (<u>cr8108-25gm</u>)

Desalting Column(s): Sephadex® G-25 (g4109) or equivalent

Step 1. Activation of Protein #1

- a. Dissolve Protein #1 (P₁) at 1-2 mg/mL in 1.0 mL Conjugation Buffer Record P₁ Concentration: (mg P₁) / [(MW protein in mg/mmol) * (mL Buffer)] = _____ mM P₁
- b. Weigh out 0.8 mg EDC and 2.2 mg of Sulfo-NHS and add directly to the protein solution in Step 1.a. This will give 4 mM EDC and 10 mM Sulfo-NHS.
- c. Gently vortex reaction mixture until all reagent is soluble.
- d. Allow Activation Reaction to proceed at room temperature for 15 minutes.
- e. Add 1.4 μ L of β -Mercaptoethanol to deactivate excess EDC. Note: If either protein has critical disulfide bonds, this deactivation step can be omitted. In such a case, proceed directly to Step 2, or desalt activated **P**₁ through gel filtration, then proceed to Step 2.

Step 2. Conjugation of Two Proteins

- a. Dissolve Protein #2 (P₂) in conjugation buffer at a concentration of 1-2 mg/mL. Ideally, this should be at the same concentration as P₁. Record P₂ Concentration: (mg P₂) / [(MW protein in mg/mmol) * (mL Buffer)] = ____ mM P₂
- b. Gently vortex and allow the crosslinking reaction to proceed for 1.5 to 3 hours at room temperature. Use of rotary mixer is preferred.
- c. Quench the conjugation reaction by adding hydroxylamine (to give a final concentration of 5 to 10 mM).
- d. Purify the obtained conjugate from excess reagents and reaction by-products by gel filtration or dialysis. Exchange sample into buffer of choice. Conjugate bonds are stable under most biological conditions.

References:

Analytical Biochemistry 185, 131-135 (1990).

Anjaneyulu, P.S.R., Staros, J.V. (1987) J. Pept, Protein Res. 30, 114-124.

Carraway, K.L., Triplett, R.B. (1970) Biochim. Biophys. Acta 200, 564-566.

Grabarek, Z., Gergerly, J. (1990) Anal. Biochem. 185, 131-135.

Hermanson, G.T. (2008) Bioconjugate Techniques, 2nd Ed. Academic Press, New York.