

Amplite™ Colorimetric Total NADP and NADPH Assay Kit *Enhanced Sensitivity*

Catalog number: 15276 Unit size: 400 Tests

Component	Storage	Amount
Component A: NADP/NADPH Recycling Enzyme Mix	Freeze (< -15 °C), Minimize light exposure	2 bottles (lyophilized powder)
Component B-I: NADPH Probe	Freeze (< -15 °C), Minimize light exposure	1 bottle (4 mL)
Component B-II: NADPH Probe Buffer	Freeze (< -15 °C), Minimize light exposure	1 bottle (16 mL)
Component C: NADPH Standard	Freeze (< -15 °C), Minimize light exposure	1 vial (167 μg)
Component D: Lysis Buffer	Freeze (< -15 °C), Minimize light exposure	1 bottle (10 mL)

OVERVIEW

Nicotinamide adenine dinucleotide (NAD+) and nicotinamide adenine dinucleotide phosphate (NADP+) are two important cofactors found in cells. NADH is the reduced form of NAD+, and NAD+ is the oxidized form of NADH. It forms NADP with the addition of a phosphate group to the 2' position of the adenyl nucleotide through an ester linkage. NADP is used in anabolic biological reactions, such as fatty acid and nucleic acid synthesis, which require NADPH as a reducing agent. In chloroplasts, NADP is an oxidizing agent important in the preliminary reactions of photosynthesis. The NADPH produced by photosynthesis is then used as reducing power for the biosynthetic reactions in the Calvin cycle of photosynthesis. The traditional NAD/NADH and NADP/NADPH assays are done by monitoring of NADH or NADPH absorption at 340 nm. This method suffers low sensitivity and high interference since the assay is done in the UV range that requires expensive quartz microplate. This Amplite™ NADP/NADPH Assay Kit provides a convenient method for sensitive detection of NADP and NADPH. The enzymes in the system specifically recognize NADP/NADPH in an enzyme cycling reaction. There is no need to purify NADP/NADPH from sample mix. The enzyme cycling reaction significantly increases detection sensitivity. Compared to Kit #15260, this kit has higher sensitivity.

AT A GLANCE

Protocol Summary

- 1. Prepare NADPH standards or test samples (50 μL)
- 2. Add NADP/NADPH working solution (50 μ L)
- 3. Incubate at room temperature for 15 minutes to 2 hours
- 4. Monitor Absorbance at 460 nm

Important Thaw one of each kit component at room temperature before starting the experiment.

KEY PARAMETERS

Absorbance microplate reader

Absorbance 460 nm Recommended plate Clear bottom

CELL PREPARATION

For guidelines on cell sample preparation, please visit https://www.aatbio.com/resources/guides/cell-sample-preparation.html

PREPARATION OF STOCK SOLUTIONS

Unless otherwise noted, all unused stock solutions should be divided into single-use aliquots and stored at -20 °C after preparation. Avoid repeated freeze-thaw cycles.

NADPH standard solution (1 mM)

Add 200 μL of 1X PBS buffer into the vial of NADPH Standard (Component C) to make 1 mM (1 nmol/ μL) NADPH standard solution.

PREPARATION OF STANDARD SOLUTION

For convenience, use the Serial Dilution Planner: https://www.aatbio.com/tools/serial-dilution/15276

NADPH standard

Add 2 μ L of 1 mM NADPH standard solution into 998 μ L 1X PBS buffer (pH 7.4) to generate 2 μ M (2 pmols/ μ L) NADPH standard solution (NS7). Take 2 μ M NADPH standard solution (NS7) and perform 1:2 serial dilutions in 1X PBS buffer to get serially diluted NADPH standards (NS6 - NS1). Note: Diluted NADPH standard solution is unstable, and should be used within 4 hours.

PREPARATION OF WORKING SOLUTION

- Add 8 mL of NADPH Probe Buffer (Component B-II) to the bottle of NADP/NADPH Recycling Enzyme Mix (Component A) and mix well.
- Add 2 mL of NADPH Probe (Component B-I) into the bottle of Component A+B-II and mix well to make NADP/NADPH working solution.

Note This NADP/NADPH working solution is enough for 200 assays.

SAMPLE EXPERIMENTAL PROTOCOL

Table 1. Layout of NADPH standards and test samples in a white/clear bottom 96-well microplate. NS= NADPH Standards (NS1 - NS7, 0.0313 to 2 μ M), BL=Blank Control, TS=Test Samples.

BL	BL	TS	TS
NS1	NS1		
NS2	NS2	•••	
NS3	NS3		
NS4	NS4		
NS5	NS5		
NS6	NS6		
NS7	NS7		

Table 2. Reagent composition for each well. High concentration of NADPH (e.g., >30 μ M, final concentration) will cause a saturated signal and make the calibration curve non-linear.

Well	Volume	Reagent
NS1 - NS7	50 μL	Serial Dilutions (0.0313 to 2 µM)
BL	50 μL	1X PBS buffer
TS	50 μL	test sample

 Prepare NADPH standards (NS), blank controls (BL), and test samples (TS) according to the layout provided in Tables 1 and 2. For a 384-well plate, use 25 μL of reagent per well instead of 50 μL.

Note Prepare cells or tissue samples as desired. Lysis Buffer (Component D) can be used for lysing the cells for convenience.

- Add 50 µL of NADP/NADPH working solution to each well of NADPH standard, blank control, and test samples to make the total NADP/NADPH assay volume of 100 µL/well. For a 384-well plate, add 25 µL of NADP/NADPH working solution into each well instead, for a total volume of 50 µL/well.
- Incubate the reaction at room temperature for 15 minutes to 2 hours, protected from light.
- Monitor the absorbance increase with an absorbance plate reader at

EXAMPLE DATA ANALYSIS AND FIGURES

The reading (Absorbance) obtained from the blank standard well is used as a negative control. Subtract this value from the other standards' readings to obtain the base-line corrected values. Then, plot the standards' readings to obtain a standard curve and equation. This equation can be used to calculate Total NADP/NADPH samples. We recommend using the Online Linear Regression Calculator which can be found at:

https://www.aatbio.com/tools/linear-logarithmic-semi-log-regression-online-calcul ator

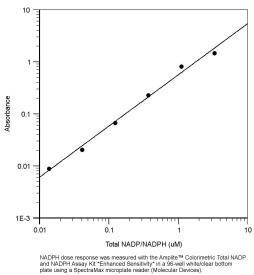


Image generated with Quest™ Graph, ©2018 AAT Bioquest

Figure 1. NADPH dose response was measured with the Amplite™ Colorimetric Total NADP and NADPH Assay Kit *Enhanced Sensitivity* in a 96-well white/clear bottom plate using a SpectraMax microplate reader (Molecular Devices).

DISCLAIMER

AAT Bioquest provides high-quality reagents and materials for research use only. For proper handling of potentially hazardous chemicals, please consult the Safety Data Sheet (SDS) provided for the product. Chemical analysis and/or reverse engineering of any kit or its components is strictly prohibited without written permission from AAT Bioquest. Please call 408-733-1055 or email info@aatbio.com if you have any questions.