

Cell Meter[™] Live Cell Caspase 9 Binding Assay Kit *Green Fluorescence*

Catalog number: 20117 Unit size: 25 Tests

Component	Storage	Amount
Component A: FAM-LEHD-FMK	Freeze (<-15 °C), Minimize light exposure	1 vial
Component B: Washing Buffer	Freeze (<-15 °C), Minimize light exposure	1 bottle (100 mL)
Component C: 500X Propidium Iodide	Freeze (<-15 °C), Minimize light exposure	1 vial (100 μL)
Component D: 500X Hoechst	Freeze (<-15 °C), Minimize light exposure	1 vial (100 μL)

OVERVIEW

Our Cell Meter[™] live cell caspases activity assay kits are based on fluorescent FMK inhibitors of caspases. These inhibitors are cell permeable and non-cytotoxic. Once inside the cell, the caspase inhibitors bind covalently to the active caspases. This Cell Meter[™] Live Cell Caspase 9 Activity Assay Kit is designed to detect cell apoptosis by measuring caspase 9 activation in live cells. It is used for the quantification of activated caspase 9 activities in apoptotic cells, or for screening caspase 9 inhibitors. FAM-LEHD-FMK, the green label reagent, allows for direct detection of activated caspase 9 in apoptotic cells by fluorescence microscopy, flow cytometer, or fluorescent microplate reader. The kit provides all the essential components with an optimized assay protocol.

AT A GLANCE

Protocol summary

- 1. Prepare cells with test compounds at a density of 5×10^5 to 2×10^6 cells/mL
- 2. Add FAM-LEHD-FMK into cell solution at 1:150 ratio
- 3. Incubate at room 37°C for 1 hour
- 4. Pellet the cells, wash and resuspend the cells with buffer or growth medium
- 5. Optional: label the cells iwth DNA stain Propidium Iodide or Hoechst 33342
- Analyze the cells with flow cytometer using 530/30 nm filter (FiTC channel), fluorescence microscope using FITC filter or fluorescence micro plate reader at 490/525 nm (Cutoff=515 nm)

Important Thaw all the components at room temperature before use.

KEY PARAMETERS

Instrument:	Fluorescence microscope			
Excitation:	See Table 1			
Emission:	See Table 1			
Recommended plate:	Black wall/clear bottom			
Instrument:	Flow externator			
	Flow cytometer			
Excitation:	See Table 1			
Emission:	See Table 1			
Instrument:	Fluorescence microplate reader			
Excitation:	See Table 2			
Emission:	See Table 2			
Instrument specification(s):	Bottom read mode			
Recommended plate:	Black wall/clear bottom			

PREPARATION OF STOCK SOLUTIONS

Unless otherwise noted, all unused stock solutions should be divided into single-use aliquots and stored at -20 $^\circ$ C after preparation. Avoid repeated freeze-thaw cycles.

1. FAM-LEHD-FMK DMSO stock solution (150X): Add 50 μ L of DMSO to the vial of FAM-LEHD-FMK (Component A).

PREPARATION OF CELL SAMPLES

For guidelines on cell sample preparation, please visit https://www.aatbio.com/resources/guides/cell-sample-preparation.html

SAMPLE EXPERIMENTAL PROTOCOL

1. Examples for inducing apoptosis in suspension culture: Treat Jurkat cells with 2 μ g/ml camptothecin for 3 hours Treat Jurkat cells with 1 μ M staurosporine for 3 hours Treat HL-60 cells with 4 μ g/ml camptothecin for 4 hours Treat HL-60 cells with 1 μ M staurosporine for 4 hours.

Note Each cell line should be evaluated on an individual basis to determine the optimal cell density for apoptosis induction

2. Add 150 X FAM-LEHD-FMK into the cell solution at a 1:150 ratio, and incubate the cells in a 37° C, 5% CO₂ incubator for 1 hour.

Note The cells can be concentrated up to $\sim 5 \times 10^6$ cells/mL for FAM-LEHD-FMK labeling. The appropriate incubation time depends on the individual cell type and cell concentration used.

 Spin down the cells at ~200g for 5 minutes, and wash cells with 1 mL washing buffer (Component B) twice. Resuspend the cells in desired amount of washing buffer.

Note FAM-LEHD-FMK is fluorescent, thus it is important to wash out any unbound reagent to eliminate the background.

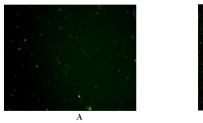
- 4. If desired, label the cells with a DNA stain (such as propidium iodide for dead cells, or Hoechst for whole population of the cell nucleus stain).
- 5. Monitor the fluorescence intensity by fluorescence microscopy, flow cytometer, or fluorescent microplate reader according to table 1 or table 2. For fluorescence microscopy and fluorescent microplate reader, place 100 μ L of the cell suspensions into each of wells of a 96-well black microtiter plate.

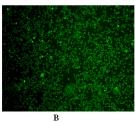
Note For detached cells, the concentration of cells should be adjusted to 2 - 5×10^5 cells/100 μ L aliguot per microtiter plate well.

 Table 1. Fluorescence intensity monitoring for flow cytometry and fluoresence microscopes.

	Flow Cytometry	Fluorescence Microscope
FAM-LEHD-FMK	530/30 nm filter (FITC channel)	FITC channel
Propidium Iodide	610/20 nm filter (PE-Texas Red channel)	TRITC channel
Hoechst Dye	450/40 nm filter (Pacific Blue channel)	DAPI channel

Table 2. Fluorescence intensity monitoring for fluorescence microplate readers.


Tel: 408-733-1055 | Fax: 408-733-1304 | Email: support@aatbio.com


©2011 AAT Bioquest, Inc. Last revised November 2019. For more information and tools, please visit https://www.aatbio.com

	Excitation	Emission	Cut Off
FAM-LEHD-FMK	490 nm	525 nm	515 nm
Propidium Iodide	535 nm	635 nm	
Hoechst Dye	350 nm	461 nm	

EXAMPLE DATA ANALYSIS AND FIGURES

Fluorescence Microscopy Sample Data:

Figure 1.

The fluorescent microscopy showing the increase in FAM-LEHD-FMK fluorescence intensity with the addition of 1 μM staurosporin in Jurkat cells. Cells were incubated with FAM-LEHD-FMK for 1 hour at 37°C. The fluorescent intensity of the cells (300,000 cells/100 $\mu L/well$) was viewed under a fluorescence microscope with a FITC channel.

DISCLAIMER

AAT Bioquest provides high-quality reagents and materials for research use only. For proper handling of potentially hazardous chemicals, please consult the Safety Data Sheet (SDS) provided for the product. Chemical analysis and/or reverse engineering of any kit or its components is strictly prohibited without written permission from AAT Bioquest. Please call 408-733-1055 or email info@aatbio.com if you have any questions.