

Calbryte[™]-520L AM

PRODUCT INFORMATION SHEET

Catalog number: 20640 Unit size: 10x50 ug

Calbryte™-520LAM Freeze (<-15 °C). Minimize light exposure 10x50 ug	Storage	omponent	Compo
	 Freeze (<	albryte™-520L AM	Calbryt

OVERVIEW

The intracellular calcium flux assay is a widely used method in monitoring signal transduction pathways and high throughput screening of G protein"coupled receptors (GPCRs) and calcium channel targets. Followed by Fluo-3 being introduced in 1989, Fluo-4, Fluo-8 and Cal-520 were later developed with improved signal/background ratio, and became the widely used Ca2+ indicators for confocal microscopy, flow cytometry and high throughput screening applications. However, there are still a few severe problems with Fluo-4. For example, as for Fluo-3, in all most all the intracellular calcium assays with Fluo-4 AM, probenecid is required to prevent the cell-loaded Fluo-4 from leaking out of cells. The use of probenecid with Fluo-4-based calcium assays compromises the assay results since probenecid is well-documented to have a variety of complicated cellular effects. Calbryte 520L, AM is a new fluorescent and cell-permeable calcium indicator. Like other dye AM cell loading, Calbryte 520L AM ester is non-fluorescent and once gets inside the cell, it is hydrolyzed by intracellular esterase and gets activated. The activated indicator is a polar molecule that is no longer capable of freely diffusing through cell membrane, essentially trapped inside cells. Calbryte 520L has low affinity to calcium ion with Kd ~100 uM. Calbryte 520L produces bright fluorescence signal in the presence of calcium ion in high concentration. It has the identical excitation and emission wavelength as Fluo-4, thus the same Fluo-4 assay settings can be readily applied to Calbryte 520L-based calcium assays.

KEY PARAMETERS

Fluorescence microscope

 Excitation
 FITC

 Emission
 FITC

 Recommended plate
 Black wall/clear bottom

Fluorescence microplate reader

Excitation	490
Emission	525
Cutoff	515
Recommended plate	Black wall/clear bottom
Instrument specification(s)	Bottom read mode/Programmable liquid handling

PREPARATION OF STOCK SOLUTIONS

Unless otherwise noted, all unused stock solutions should be divided into single-use aliquots and stored at -20 °C after preparation. Avoid repeated freeze-thaw cycles.

Calbryte[™]-520L AM Stock Solution

Prepare a 2 to 5 mM stock solution of Calbryte[™]-520L AM in anhydrous DMSO.

PREPARATION OF WORKING SOLUTION

Calbryte™-520L AM Working Solution

On the day of the experiment, either dissolve CalbryteTM 520L AM in DMSO or thaw an aliquot of the indicator stock solution to room temperature. Prepare a dye working solution of 2 to 20 μ M in a buffer of your choice (e.g., Hanks and Hepes buffer) with 0.04% Pluronic® F-127. For most cell lines, CalbryteTM 520L AM at a final concentration of 4-5 μ M is recommended. The exact concentration of indicators required for cell loading must be determined empirically.

Note The nonionic detergent Pluronic® F-127 is sometimes used to increase

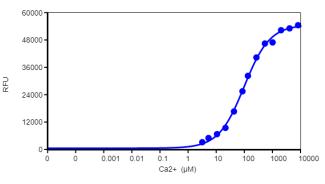
the aqueous solubility of Calbryte™ 520L AM. A variety of Pluronic® F-127 solutions can be purchased from AAT Bioquest.

Note If your cells contain organic anion-transporters, probenecid (1-2 mM) may be added to the dye working solution (final in well concentration will be 0.5-1 mM) to reduce leakage of the de-esterified indicators. A variety of ReadiUseTM probenecid products, including water-soluble, sodium salt, and stabilized solution, can be purchased from AAT Bioquest.

SAMPLE EXPERIMENTAL PROTOCOL

Following is our recommended protocol for loading AM esters into live cells. This protocol only provides a guideline and should be modified according to your specific needs.

- 1. Prepare cells in growth medium overnight.
- On the next day, add 1X Calbryte[™] 520L AM working solution into your cell plate.


Note If your compound(s) interfere with the serum, replace the growth medium with fresh HHBS buffer before dye-loading.

 Incubate the dye-loaded plate in a cell incubator at 37 °C for 30 to 60 minutes.

Note Incubating the dye for longer than 1 hour can improve signal intensities in certain cell lines.

- Replace the dye working solution with HHBS or buffer of your choice (containing an anion transporter inhibitor, such as 1 mM probenecid, if applicable) to remove any excess probes.
- Add the stimulant as desired and simultaneously measure fluorescence using either a fluorescence microscope equipped with a FITC filter set or a fluorescence plate reader containing a programmable liquid handling system such as an FDSS, FLIPR, or FlexStation, at Ex/Em = 490/525 nm cutoff 515 nm.

EXAMPLE DATA ANALYSIS AND FIGURES

Ca2+ Dependent Dose Response of Calbryte 520L

Powered by AAT Bioquest Quest Graph™, see more at https://www.aatbio.com

Figure 1. Ca2+ Dependent Dose Response of Calbryte 520L

DISCLAIMER

AAT Bioquest provides high-quality reagents and materials for research use only. For proper handling of potentially hazardous chemicals, please consult the Safety Data Sheet (SDS) provided for the product. Chemical analysis and/or reverse engineering of any kit or its components is strictly prohibited without written permission from AAT Bioquest. Please call 408-733-1055 or email info@aatbio.com if you have any questions.