ProtonexTM Green 500 Dextran

Ordering Information

Product Number: 21217(1 mg)

Storage Conditions

Keep at -20 °C and avoid light

Introduction

ProtonexTM Green dye demonstrated pH-dependent fluorescence. Unlike most of the existing fluorescent dyes that are more fluorescent at higher pH, acidic conditions enhance the fluorescence of ProtonexTM Green dye. The fluorescence of ProtonexTM Green dye increases as pH decreases from neutral to the acidic. The lack of fluorescence outside the cell eliminates the wash steps. ProtonexTM Green dye provides a powerful tool to monitor acidic cell compartments such as endosomes and lysosomes. ProtonexTM Green dye is non-fluorescent outside the cells, but fluoresces brightly green in acidic compartments (such as phagosomes, lysosomes and endosomes). This ProtonexTM Green enables the specific detection of cellular acidic compartments with reduced signal variability and improved accuracy for imaging or flow applications. ProtonexTM Green has the spectral properties similar to those of FITC, making the common filter set of FITC readily available to the assays of ProtonexTM Green.

Chemical and Physical Properties

Molecular Weight: ~ 10,000 Solvent: Water Spectral Properties: Ex/Em = 443/505 nm

Assay Protocol for Endocytosis

Brief Summary

Prepare cells in growth medium→ Replace the medium with ProtonexTM Green Dextran loading solution (100 µL/well for 96-well plate)→ Incubate at 37[°]C for 5-20 minutes→ Wash and replace with HHBS →Read Fluorescence at Ex/Em= 443/505 nm

Note: The following is the recommended protocol for standard cell load. The protocol only provides a guideline, should be modified according to the specific needs.

1. Prepare cells as desired. For example, plate adherent cells overnight in growth medium at 40,000 to 80,000 cells/well/100µL for 96-well or 10,000 to 20,000 cells/well/25µL for 384-well plates.

Note: Each cell line should be evaluated on an individual basis to determine the optimal cell density.

2. Prepare RatioWorksTM ProtonexTM Green Dextran loading solution:

- 2.1 Prepare a 1mg/mL stock solution of Protonex[™] Green Dextran in 1 mL of sterile water or Hanks and 20 mM Hepes buffer (HHBS). The stock solution should be used promptly. Any unused solution need to be aliquoted and refrozen at ≤-20 °C. Note: Avoid repeated freeze-thaw cycles, and protect from light.
- 2.2 Prepare a 20-100ug/mL Protonex[™] Green Dextran loading solution in HHBS.

3. Run Endocytosis Assay

3.1 Remove the medium, and add 100 µL/well (96-well plate) or 25 µL/well (384-well plate) Protonex[™] Green Dextran loading solution into the cell plate (from Step 2.2).

Note1: It is important to replace the growth medium with HHBS buffer (100 μ L/well for 96-well plate or 25 μ L/well for 384-well plate before dye-loading) if your compounds interfere with the serum. Note2: Rapid trafficking of ProtonexTM Green dextran from early endosomes to late endosomes and subsequent fusion with

lysosomes can occur. To aid the visualization of $Protonex^{TM}$ Green dextran within the endosomes, we recommend increasing the labeling concentration and decreasing the loading time, and imaging immediately.

- 3.2 Incubate the dye-loading plate at cell incubator for 5 to 20 minutes.
- 3.3 Wash and replace the dye-loading solution with HHBS or growth medium.
- 3.4 Run the endocytosis assay by monitoring the fluorescence at Ex/Em = 443/505 nm.

Note: The fluorescence signal from Protonex[™] Green dextran is stable for at least one hour after trafficking to lysosomes has occurred. Because lysosomes have a lower pH compared to endosomes, the signal from Protonex[™] Green dextran within the lysosomes is brighter than the signal from Protonex[™] Green dextran within the endosomes. The lysosomal Protonex[™] Green dextran concentration is directly dependent on endocytotic uptake; therefore, the modulation of endocytosis can be inferred from the intensity of Protonex[™] Green dextran signal from the lysosomes.

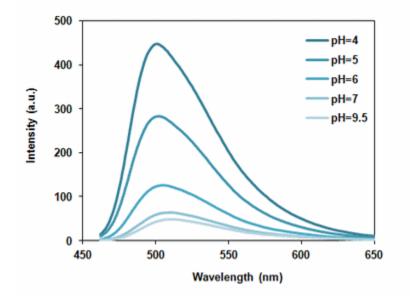


Figure 1. The fluorescence emission spectra of the Protonex[™] Green Dextran.